Doctors often plan treatments based on imaging. X-rays, ultrasound and CT scans provide useful pictures, but when the highest quality images are needed, they turn to MRI scanners. While CT scanners use x-rays and therefore expose the patient to radiation, magnetic resonance imaging (MRI) uses powerful magnets and is virtually risk free.
MRI scans are obtained for many medical conditions, although since they are expensive and complicated to interpret, they certainly aren’t as easy as taking a chest x-ray. Examples for which they are used include planning surgery for rectal cancers, assessing bones for infection (osteomyelitis), looking at the bile ducts in detail for trapped gallstones, assessing ligamental damage in the knee joints and assessing the spinal cord for infections, tumours or trapped nerves.
Physicists and engineers use and manipulate the basic laws of physics to develop these incredible scanners for doctors to use. MRI scans provide such details because they work at a sub- molecular level; they work on the protons within hydrogen atoms. By changing the position of these protons using magnetic fields, extremely detailed pictures of the different types of pictures are obtained. Since these pictures rely on the tiny movements of these tiny particles, you need to lie very still during the scan.